Role of glycogen synthase kinase-3β and PPAR-γ on epithelial-to-mesenchymal transition in DSS-induced colorectal fibrosis

نویسندگان

  • Jacopo Di Gregorio
  • Roberta Sferra
  • Silvia Speca
  • Antonella Vetuschi
  • Caroline Dubuquoy
  • Pierre Desreumaux
  • Simona Pompili
  • Loredana Cristiano
  • Eugenio Gaudio
  • Vincenzo Flati
  • Giovanni Latella
چکیده

BACKGROUND Intestinal fibrosis is characterized by abnormal production and deposition of extracellular matrix (ECM) proteins by activated myofibroblasts. The main progenitor cells of activated myofibroblasts are the fibroblasts and the epithelial cells, the latter through the epithelial-mesenchymal transition (EMT). AIM To evaluate the action of the new PPAR-γ modulator, GED-0507-34 Levo (GED) on the expression of EMT associated and regulatory proteins such as TGF-β, Smad3, E-cadherin, Snail, ZEB1, β-catenin, and GSK-3β, in a mouse model of DSS-induced intestinal fibrosis. METHODS Chronic colitis and fibrosis were induced by oral administration of 2.5% DSS (w/v) for 6 weeks. GW9662 (GW), a selective PPAR-γ inhibitor, was also administered by intraperitoneal injection at the dose of 1 mg/kg/day combined with GED treatment. All drugs were administered at the beginning of the second cycle of DSS (day 12). 65 mice were randomly divided into five groups (H2O as controls n = 10, H2O+GED n = 10, DSS n = 15, DSS+GED n = 15, DSS+GED+GW n = 15). The colon was excised for macroscopic examination and histological and morphometric analyses. The level of expression of molecules involved in EMT and fibrosis, like TGF-β, Smad3, E-cadherin, Snail, ZEB1, β-catenin, GSK-3β and PPAR-γ, was assessed by immunohistochemistry, immunofluorescence, western blot and Real Time PCR. RESULTS GED improved the DSS-induced chronic colitis and fibrosis. GED was able to reduce the expression of the main fibrosis markers (α-SMA, collagen I-III and fibronectin) as well as the pivotal pro-fibrotic molecules IL-13, TGF-β and Smad3, while it increased the anti-fibrotic PPAR-γ. All these GED effects were nullified by co-administration of GW with GED. Furthermore, GED was able to normalize the expression levels of E-cadherin and β-catenin and upregulated GSK-3β, that are all known to be involved both in EMT and fibrosis. CONCLUSIONS The DSS-induced intestinal fibrosis was improved by the new PPAR-γ modulator GED-0507-34 Levo through the modulation of EMT mediators and pro-fibrotic molecules and through GSK-3β induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

The Potential Role of Glycogen Synthase Kinase-3β in Neuropathy-Induced Apoptosis in Spinal Cord

Introduction: Glycogen Synthase Kinase-3β (GSK-3β) participates in several signaling pathways and plays a crucial role in neurodegenerative diseases, inflammation, and neuropathic pain. The ratio of phosphorylated GSK-3β over total GSK-3β (p-GSK-3β/t-GSK-3β) is reduced following nerve injury. Apoptosis is a hallmark of many neuronal dysfunctions in the context of neuropathic pain. Thus, this st...

متن کامل

Small interfering RNA targeting ILK inhibits EMT in human peritoneal mesothelial cells through phosphorylation of GSK‑3β.

Emerging evidence has suggested that human peritoneal mesothelial cells (HPMCs) undergo epithelial‑mesenchymal transition (EMT) in peritoneal fibrosis. The molecular mechanisms underlying peritoneal fibrosis and the key molecules involved are not yet fully elucidated. In order to enhance the understanding of peritoneal fibrosis, the present study investigated the roles of integrin‑linked kinase...

متن کامل

GSK-3β-mediated fatty acid synthesis enhances epithelial to mesenchymal transition of TLR4-activated colorectal cancer cells through regulation of TAp63.

Glycogen synthase kinase-3β (GSK-3β) in cancer cells is a critical regulatory component of both cellular metabolism and epithelial-mesenchymal transition (EMT) processes via regulation of the β-catenin/E-cadherin and phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Lipogenesis of cancer cells also plays a critical role in survival and metastasis. We investigated the role of GSK-3β-mediat...

متن کامل

The neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β

Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017